<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 5-2 (Bisectors in Triangles)

Theorem 5-2	Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.	
Proof	Given: $\overrightarrow{CD} \perp \overrightarrow{AB}, \overrightarrow{CD}$ bised Prove: $DA = DB$ Proof: $\overrightarrow{AC} \cong \overrightarrow{BC}$ $\overrightarrow{CD} \perp \overrightarrow{AB}$ $\angle DCA \And \angle DCB$ are rt $\angle s$ $\angle DCA \cong \angle DCB$ $\overrightarrow{DC} \cong \overrightarrow{DC}$ $\Delta ADC \cong \Delta BDC$ $\overrightarrow{AD} \cong \overrightarrow{BD}$ DA = DB Q.E.D.	(defn. bisector) $A \xrightarrow{C} B$ (Given)
Theorem 5-3	<u>Converse of the Perpendicular Bisector Theorem</u> If a point is equidistant from the endpoints a segment, then it is the perpendicular bisector of the segment.	
Example	Pg 250, Check Understanding 1 Use the information given in the diagram. \overrightarrow{CD} is the perpendicular bisector of \overrightarrow{AB} . Find CA & DB. Explain your reasoning.Image: A for the diagram of the diagram	

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 5-2 (Bisectors in Triangles)

Definition	Distance from a point to a line The distance from a point to a line is the length of the perpendicular segment from the point to the line.		
Theorem 5-4	<u>Angle Bisector Theorem</u> If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.		
Proof	Given: $\overrightarrow{PB} \perp \overrightarrow{AB}, \overrightarrow{PC}$ Prove: $PB = PC$	$\overrightarrow{C} \perp \overrightarrow{AC}, \overrightarrow{AP}$ bisects $\angle BAC$	
	Proof: $\angle PBA \cong \angle PCA$	(all rt.	
	\angle 's are \cong)	(defr. angle bisector)	
	$\frac{\angle BAP \cong \angle CAP}{\overline{AP} \cong \overline{AP}}$	(defn. angle bisector) (reflexive POC)	
	$\Delta BAP \cong \Delta CAP$	(AAS)	
	$\frac{\Box}{PB} \cong \frac{PC}{PC}$	(CPCTC)	
	PB = PC	(defn. of segment congruence)	
	Q.E.D.		
Theorem 5-5			
	Converse of the Angle Bisector Theorem		
	If a point in the interior of an angle is equidistant from the side the angle, then the point is on the bisector of the angle.		
Example	the angle, then the point is on the disector of the angle.		
p	Pg. 251 – Check Understanding 2		
	a) According to the diagram, how far is $K - D = 2x^{\circ}$		
	from \overline{EH} ? 10		
	from \overline{ED} ? 10 $K \langle C \rangle = E$		
	b) What can you conclude shout $\overline{\mathbf{EK}} 2$		
	b) What can you conclude about EK ? It is the angle bisector of $\angle DEH$.		
	c) Find the value of x. 2x = x + 20 $x = 20$		
	d) Find $m \angle DEH$. $2^*x + (x + 20) = 2$	2*20 + (20 + 20) = 80	

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 5-2 (Bisectors in Triangles)